
  

  

Abstract— Research using nonhuman primate models for 

human disease frequently requires behavioral observational 

techniques to quantify functional outcomes. The ability to assess 

reaching and grasping patterns is of particular interest in 

clinical conditions that affect the motor system (e.g., spinal cord 

injury, SCI). Here we explored the use of DeepLabCut, an open-

source deep learning toolset, in combination with a standard 

behavioral task (Brinkman Board) to quantify nonhuman 

primate performance in precision grasping. We examined one 

male rhesus macaque (Macaca mulatta) in the task which 

involved retrieving rewards from variously-oriented shallow 

wells. Simultaneous recordings were made using GoPro Hero7 

Black cameras (resolution 1920 x 1080 at 120 fps) from two 

different angles (from the side and top of the hand motion). The 

task/device design necessitates use of the right hand to complete 

the task. Two neural networks (corresponding to the top and side 

view cameras) were trained using 400 manually annotated 

images, tracking 19 unique landmarks each. Based on previous 

reports, this produced sufficient tracking (Side: trained pixel 

error of 2.15, test pixel error of 11.25; Top: trained pixel error 

of 2.06, test pixel error of 30.31) so that landmarks could be 

tracked on the remaining frames. Landmarks included in the 

tracking were the spatial location of the knuckles and the 

fingernails of each digit, and three different behavioral measures 

were quantified for assessment of hand movement (finger 

separation, middle digit extension and preshaping distance). 

Together, our preliminary results suggest that this markerless 

approach is a possible method to examine specific kinematic 

features of dexterous function.  

 
Clinical Relevance— The methodology presented below 

allows for the markerless tracking of kinematic features of 

dexterous finger movement by non-human primates. This 

method could allow for direct comparisons between human 

patients and non-human primate models of clinical conditions 

(e.g., spinal cord injury). This would provide objective 

quantitative metrics and crucial information for assessing 

movement impairments across populations and the potential 

translation of treatments, interventions and their outcomes.  

I. INTRODUCTION 

Behavioral assessments of motor function in animal 
models of disease have ranged from observational rating scales 
(e.g., Basso, Beattie, Bresnahan, BBB Locomotor Rating 
Scale [1]), to simple measures on set tasks (e.g., time required 
for reward retrievals [2], [3]) to 3D kinematic metrics 
requiring advanced equipment and analytical techniques [4], 
[5]. Similarly, for human clinical diagnosis, qualitative scales 
such as the Jebsen-Taylor Hand function test or the GRASSP 

 
 

test [6], [7] have been used to simulate activities of daily living 
for patients [8]. While scales are powerful benchmarking tools 
and provide standardization across experiments and studies, 
they don’t provide quantitative measures of movement 
kinematics (e.g., changes in position or velocity).  

To obtain kinematic information, one common approach is 
to place physical markers at specific anatomical locations on 
animals to focus on joint movement. For example, Courtine et 
al. used reflective markers at bony landmarks in rats [4] to 
obtain the walking pattern of the animals before and after 
injury. In non-human primates, physical markers in 
conjunction with motion capture systems have been used to 
quantitatively examine reaching and grasping behavior [5], 
[9]. This type of quantitative data collection has provided more 
information on the detailed motor behavior while still 
concurrently obtaining simpler measures of task performance 
such as success rate, time to completion, etc. However, these 
types of marker-based tracking methods can affect the natural 
behavior of the animal and consequently affect the behavioral 
analysis [10]. 

 Recently, more advanced computational techniques such 
as DeepLabCut allow for the tracking of anatomical locations 
without the use of physical markers during movement [11]. 
Previous uses of DeepLabCut include reach and grasp tasks 
for mice (3D information) and more naturalistic studies 
conducted on non-human primates (2D information) [9]–[15]. 
In both animal models, DeepLabCut was able to achieve 
sufficient tracking so that further quantitative analysis could 
be performed. That is, the specific landmarks were accurately 
tracked (e.g., the individual digits in the rat model) allowing 
further analyses of movement kinematics.  

Here we present a methodology which will allow for the 
recording and analysis of behavioral data when a monkey is 
completing the Brinkman board task (as presented in [19] and 
described in D of the Methodology below) using DeepLabCut 
[20]. Although preliminary, this study demonstrates the 
feasibility of extracting quantitative kinematic movement 
information (e.g., finger extension), based on the anatomical 
features of the digits, without the use of physical markers. This 
would be an advancement over previous techniques in that   
natural grasping behavior is minimally influenced. 

II. METHODOLOGY 

A. Animal 

In this study, one rhesus macque (Maca mulatta, male age 
7 years 11 months, weight of 11.70kg) was used. This animal 
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was housed at the California National Primate Research 

Center, Davis, CA; all primate procedures were approved by 

the California National Primate Research Center Institutional 

Animal Care and Use Committee. 

B. Behavioral Setup Design 

We modified a previous setup that requires bimanual 
movements to retrieve food rewards from the Brinkman board 
[19]. The left hand must depress the lever through the left 
porthole to allow the right hand to interact with the Brinkman 
board and retrieve the food reward. Figure 1 shows a front 
view of the apparatus while the animal performs the task. The 
locations of the cameras were chosen to ensure that they can 
capture the full view of the animal’s right hand completing the 
task, but are inaccessible to the animal. The side camera was 
placed 10.8 cm away from the closest side of the Brinkman 
board tray and sat in a small housing to ensure that it can be 
easily removed and placed again in the same location. The 
camera is surrounded by three Plexiglas walls with an opening 
that is only accessible to the trainer/tester and not the animal. 
The top camera was placed 28.6 cm away from the surface of 
the Brinkman board and was centered on the board. A small 
housing was created around the top camera so that it was also 
inaccessible to the animal. Additionally, both housings for the 
cameras stabilized the camera during testing, countering any 
device motion due to the animal. 

 

Figure 1. Animal performing the Brinkman board task using the behavioral 

setup. The lever must be pushed by the left hand in order for the right hand 

to have access to the Brinkman board. Cameras were placed above and to 

the right of the animal’s hand, both of which were inaccessible to the animal. 

C. Camera Selection 

The GoPro Hero 7 Black was selected based on several 
criteria as summarized by Table I.  

 

 

 

 

 

 

 

 

TABLE I.  CAMERA SELECTION CRITERION 

Characteristic Desired  

Camera size <120 cm3 

Camera weight <200 g 

Recording resolution >1080p 

Frame rate 

≥90 

frames per 

second 

External SD card support >128gb 

Standard video format .mp4 

Video stability assist  

Replaceable battery  

Shock resistance  

Water resistance/proof  

Mounting hardware support  

Product support  

 

These characteristics allowed for minimal changes to the 
existing behavioral setup, while allowing for future 
quantitative analysis. For example, the camera size was a 
strong factor when deciding camera type, as the overall size 
and dimensions of the behavioral setup could not be changed 
and the camera must be removable.  

D. Behavioral Hand Task (The Brinkman Board Task) 

The animal was trained to use his right hand to retrieve food 

rewards from the wells on the Brinkman board. These rewards 

varied to optimize the motivation of the animal (e.g. yogurt 

covered raisins, nuts, etc.) but maintain a consistent reward 

size. Performance on the board is typically assessed by a 

numerical score (between 0-3) based on the animal’s ability 

to pinch, retrieve food rewards without dropping it and 

transfer that reward to their mouth. The animal was given 60 

seconds to clear each board. In the preliminary analysis 

described here, eight unique Brinkman boards were 

presented, which constitutes one session. The animal then 
completed two more sessions within the same day to allow for 

more videos to be included in the DeepLabCut analysis 

(described in section F). These Brinkman boards varied in the 

number of wells (1-9) and the well orientation. Examples of 

these Brinkman boards are shown below in Figure 2.  
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Figure 2. Depiction of four example Brinkman boards. Note the differences 

in the number of reward wells (2, 4, 7 and 9) and orientation with respect to 

hand movement (45,90, and 180). 

E. Video Collection 

Recording of the task begins when the Brinkman board is 

presented to the animal and ends when the animal either 

successfully removes all the rewards from the Brinkman 

board or reaches the 60 second timeout period. This process 

is repeated until the animal completes the total number of 

Brinkman boards (8) for a given session. These videos are 

recorded at a resolution of 1920 x 1080 pixels at 120 frames 

per second in an mp4 format. These videos are then imported 

into DeepLabCut for further analysis. 

F. DeepLabCut Analysis 

DeepLabCut is a deep learning toolset that allows for the 

markerless tracking of various locations across multiple video 

frames [11]. In this specific case, two networks were trained 

corresponding to the two cameras (Top and Side) using 400 

manually annotated images from 16 different videos (25 

images from each video determined by a k-means algorithm 
for visual uniqueness) from 2 separate sessions of the 

Brinkman board task. In these annotated images, the 

following landmarks in the videos of the right hand were of 

interest (locations of fingertips and knuckles of the five digits) 

as summarized in Table II. Examples of the side and top view 

camera frames, with the color coded markers of the 

landmarks, are shown in Figure 3A and B, respectively. 

TABLE II.  FEATURES OF INTEREST 

Feature Locations 

Thumb Digit (D1) 
Fingertip, 1st Knuckle and 

2nd Knuckle 

Index Digit (D2) 
Fingertip, 1st Knuckle, 2nd 

Knuckle, and 3rd Knuckle 

Middle Digit (D3) 
Fingertip, 1st Knuckle, 2nd 

Knuckle, and 3rd Knuckle 

Ring Digit (D4) 
Fingertip, 1st Knuckle, 2nd 

Knuckle, and 3rd Knuckle 

Pinky Digit (D5) 
Fingertip, 1st Knuckle, 2nd 

Knuckle, and 3rd Knuckle 

 

 
Figure 3. (A) Side view of marked locations. Only the index and thumb digits 

are fully markered. The remaining locations are occluded from this camera 

angle. For example, the 1st knuckle of the middle digit (D3) is occluded by 

the index digit (D2). (B) Top view of markered locations at a different 

timepoint with respect to panel A. The top view mainly focuses on the 2nd and 

3rd knuckle locations of all the digits. Similar to panel A, not all locations are 

markered as they are occluded by other digits. Specifically, the 2nd knuckle of 

the index digit (D2) is folded under (occluded) the middle digit (D3). 

Following the recommend procedure [11], this method 

yielded a side camera trained pixel error of 2.15 (this 

represents the root mean square error between user and 

DeepLabCut values using images the DeepLabCut neural 

network were trained on), test pixel error of 11.25 (which 

represents a max error of 1.04%. This error is the root mean 

square error between user and DeepLabCut using images 

naive to the DeepLabCut neural network training); top camera 

trained pixel error of 2.06, test pixel error of 30.31 (which is 

a max error of 2.81%). These values were comparable to a 

previous primate study, and thus were judged sufficient for 
additional tracking on the remaining videos [15]. The comma-

separated values (CSV) file output from DeepLabCut was 

then imported into MATLAB for further analysis. 

G. Filtering 

The CSV file was imported into MATLAB where the data 

were filtered by the confidence value given by DeepLabCut 
at each time point. A confidence threshold of 0.8 was set. This 

value was determined as the balance of having enough 

accurate points as determined by DeepLabCut and by visually 

validating the locations of those markers. If the value fell 

below the threshold, it was replaced with an average of the 12 

values surrounding it. The data were further filtered by a box 

filter with a size of 30 data points to smooth out the 

movements. Lastly, the values were converted from pixel 

space to cm using a basic linear conversion based on the 

dimensions of the Brinkman board. 

H. Quantitative Behavioral Analysis 

Based on the filtered kinematic data, the following 

parameters were quantified. These were chosen based on 

movement features often examined in the human patients and 

previous non-human primate studies, such as those examining 

precision grasp [21]–[23]. Finger extension and finger 

separation were determined using the top camera view, and 
hand preshaping was determined using the side camera view.  

 
Finger Extension 
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Finger extension was determined as the Euclidean distance 
between the 2nd knuckle and the 3rd knuckle within a digit. The 
2nd knuckle was chosen over the 1st knuckle or fingertip as it 
was consistently in view/frame and its tracking was more 
stable across sessions. Figure 4 shows this measure, 
represented by the white bidirectional arrow. 

 

Figure 4. Depiction of finger extension. Each filled circle represents the 

location tracked in the video (e.g., filled purple circles represent the knuckles 

of the middle digit, D3). The double white arrow is the finger extension of 

3.61 cm between the 2nd and 3rd knuckle of the ring digit (D4). 

Finger Separation 

Finger Separation was defined as the Euclidean distance 
between digits at the 2nd knuckle. The 2nd knuckle was selected 
due to it being consistently in view/frame. Figure 5 shows this 
measure, as represented by the white bidirectional arrow. 

 

Figure 5. Depiction of finger separation. As in Figure 4 each filled circle 

represents the location tracked in the video (e.g., filled purple circles 

represent the knuckles of the middle digit, D3). The double white arrow is the 

finger separation of 0.77 cm between the 2nd knuckles of the ring and pinky 

(D4 and D5) digits. 

Hand Preshaping 

Hand preshaping was defined as the Euclidean distance 
between the thumb (D1) fingertip/fingernail and the index 
(D2) fingertip/fingernail. Figure 6 shows the distance between 
these locations during the Brinkman board task as the animal 
attempts to retrieve the food reward. 

 

Figure 6. Depiction of hand preshaping. As in Figures 4 and 5 each filled 

circle represents the location tracked in the video (e.g., filled green circles 

represent the knuckles of the thumb digit, D1). The double white arrow is the 

finger separation between the tip of the index (D2) and thumb (D1), 1.25 cm 

in this example.  

III. RESULTS 

In all cases described below, the animal successfully 
retrieved all the food rewards from the Brinkman boards under 
the 60 second threshold for timeout. 

Finger Extension 

Figures 7A and B show differences in finger extension 

between two different Brinkman boards along with the 
maximum value determined within the same testing session. 

The different oriented wells required changes in the hand 

angle and thus, different amounts of finger extensions. For 

performance on the two different boards, we determined the 

time of max finger extension when retrieving the rewards. 

Figure 7A is performance on Brinkman board A in Figure 2 

and has a maximum finger extension of 3.71 cm. Figure 7B is 

performance on Brinkman board C in Figure 2 and the animal 

has a maximum finger extension of 4.81 cm. 

 

 

Figure 7. (A) Finger extension on Brinkman board A (Figure 2A). In this 

example, the animal had a maximum finger extension of 3.71 cm. (B) Finger 

extension on Brinkman board C (Figure 2C). In this example, the animal had 

a maximum finger extension of 4.81 cm. 

Finger Separation 

Similar to Figure 7, Figures 8A and B show the difference 

of finger separation when the animal is completing the 

Brinkman board task. As for finger extension, the different 

oriented wells required different amounts of finger separation. 

For performance on two different boards, we determined the 

time of max finger separation when retrieving the rewards. 

Figure 8A is performance on Brinkman board A in Figure 2 
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and has a maximum finger separation of 1.39 cm. Figure 8B 

is performance on Brinkman board D in Figure 2 and the 

animal has a maximum finger separation of 2.53 cm. 
 

 
Figure 8. (A) Finger separation on Brinkman board A. In this case, the 

animal had a maximum finger separation of 1.39 cm. (B) Finger separation 

on Brinkman board D. In this case, the animal had a maximum finger 

separation of 2.53 cm. 

Hand Preshaping 

An example of preshaping for one reach/grasp on 

Brinkman board A (Figure 2) is shown in Figure 9. The 

change in the distance between the thumb (D1) and the index 

(D2) fingertip during the retrieval motion is shown in Figure 

10. As shown in the plot, the distance starts at 3.5 cm and then 

decreases to 1.25 cm at food retrieval. The labels A, B and C 

on the plot in Figure 10 correspond to the video frames shown 

in Figures 9A, B and C, respectively.  
 

 
Figure 9. (A) Video frame of timepoint A in Figure 10, an approximate 

distance of 3.5 cm between the index digit and thumb (D2 and D1). (B) Video 

frame of timepoint B in Figure 10, an approximate distance of 3.0 cm between 

the index and thumb digit, which is a slight decrease from timepoint A. (C) 

Video frame of timepoint C in Figure 10, an approximate distance of 1.25 cm 

between the index and thumb digit. At this point, the animal has nearly 

competed the reaching motion to the food reward.  

 
Figure 10. Plot of preshaping (distance between the index digit and thumb, 

D2 and D1) during food retrieval over time for one reach/grasp on Brinkman 

board A (Figure 2). Labels A, B and C correspond to the frames in Figure 9. 

IV. CONCLUSION AND FUTURE WORK 

Here we present a methodology which allows for the 

markerless tracking of different anatomical features during 

dexterous finger movements in nonhuman primates. 

Specifically, we show that a two camera setup combined with 

the DeepLabCut algorithm can quantify several features of 

finger movements (separation, extension and preshaping) 

while nonhuman primates retrieve food rewards from 

differently oriented wells. This approach could compliment 

current qualitative scales used for behavioral assessments by 

providing quantitative kinematic measures of motor behavior. 

In our future work we will apply this analysis over the time 

frames of recovery for different animal models (e.g., spinal 

cord injury) and determine the extent these measures relate to 

other metrics of successful reaches/grasps (e.g., success rate, 

time to complete tasks, etc.). Additionally, we will examine 

the variance of these measures across trials and sessions to 

quantify performance consistency—a key element of 

stereotypical motor behavior. Importantly, this methodology 

may provide a means to rigorously quantify the extent to 

which dexterous motor behaviors reflect the abilities 

preceding injury and provide measures that are sensitive to 

the injury and treatments. If successful, this would provide 

critical information to evaluate the functional effectiveness of 

novel interventions for clinical conditions that affect the 

motor system.  
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