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Control of Movement

Motion state-dependent motor learning based on explicit visual feedback is
quickly recalled, but is less stable than adaptation to physical perturbations
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1Department of Neurobiology, Physiology and Behavior, University of California, Davis, California and 2Department of
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Abstract

Recent studies have shown that adaptation to visual feedback perturbations during arm reaching movements involves implicit
and explicit learning components. Evidence also suggests that explicit, intentional learning mechanisms are largely responsible
for savings—a faster recalibration compared with initial training. However, the extent explicit learning mechanisms facilitate learn-
ing and early savings (i.e., the rapid recall of previous performance) for motion state-dependent learning is generally unknown.
To address this question, we compared the early savings/recall achieved by two groups of human subjects. One experienced
physical perturbations (a velocity-dependent force-field, vFF) to promote adaptation that is thought to be a largely implicit pro-
cess. The second was only given visual feedback of the required force-velocity relationship; subjects moved in force channels
and we provided visual feedback of the lateral force exerted during the movement, as well as the required force pattern based
on the movement velocity. Thus, subjects were shown explicit information on the extent the applied temporal pattern of force
matched the required velocity-dependent force profile if the force-field perturbation had been applied. After training, both
groups experienced a decay and washout period, which was followed by a reexposure block to assess early savings/recall.
Although decay was faster for the explicit visual feedback group, the single-trial recall was similar to the physical perturbation
group. Thus, compared with visual feedback perturbations, conscious modification of motor output based on motion state-de-
pendent feedback demonstrates rapid recall, but this adjustment is less stable than adaptation based on experiencing the multi-
sensory errors that accompany physical perturbations.

NEW & NOTEWORTHY The extent explicit feedback facilitates motion state-dependent changes to motor output is largely
unknown. Here, we examined motor adaptation for subjects that experienced physical perturbations and another that made
adjustments based on explicit visual feedback information of the required force-velocity relationship. Our results suggest that
adjustment of motor output can be based on explicit motion state-dependent information and demonstrates rapid recall, but this
learning is less stable than adaptation based on physical perturbations to movement.

explicit; motor adaptation; perturbation; savings; visual feedback

INTRODUCTION

Motor adaptation is the process of gradually changing
movement performance by adjusting behavior in response
to changing environmental alterations and perturbations. It
is a critical component of how we navigate the world, recali-
brating our actions to account for both the self-induced and
externally caused movement variability we experience. For
example, when walking on ice, one must change gait pat-
terns to maintain balance. Force-field perturbations, an

error-based paradigm that applies physical disturbances to
movements, are a common method used to systematically
study motor adaptation of arm reaching movements (1–7).
In the majority of these paradigms, subjects make reaching
arm movements using a robotic manipulandum that dis-
rupts their movements with an applied physical force.
Adaptation to these force-field perturbations involves
motion state-dependent learning, where the temporal force
pattern applied by the robot is based on movement state
information [e.g., movement velocity or limb position (2,
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8–13)]. These disturbances induce motion state-dependent
learning—a temporal pattern of motor output (in this case
an applied force) based on movement information (e.g.,
movement velocity or limb position). Thus, over successive
trials subjects are able to gradually reduce the force-field
induced error by learning the temporal force patterns
required to counteract the robot-produced forces (5, 14).

The motor adaptation in the aforementioned examples is
based on physical perturbations to movement. In contrast,
previous studies of grip force control have shown that sub-
jects can also learn to modulate the temporal patterns of
force based on visual feedback (15–20). Object manipulation
(e.g., prevention of object slipping or damage) relies on effec-
tive grip-load force coupling, where grip force is modulated
based upon the experienced load force. In these paradigms,
the effect of visual feedback on the accuracy of grip-load
force coupling was investigated by having subjects grasp a
force transducer coupled to a virtual object and track a mov-
ing target. With visual feedback of object motion, subjects
showed significant improvement in grip-load force coupling.
That is, subjects learned to adjust their grip force in a linear
manner with time based on visual feedback of the experi-
enced load force. Although providing direct information has
been shown to aid other forms of motor adaptation (21, 22),
the extent explicit visual feedback can be used to intention-
ally learn motion state-dependent force patterns is an open
question.

Given the significant role of explicit learning during visuo-
motor adaptation (23), research has been conducted to evalu-
ate its contribution to adaptation based on dynamic force-
field perturbations. Studies have indicated the potential
involvement of explicit learning in force-field adaptation
using disengagement instructions to abandon learned explicit
strategies (24) or to report explicit strategies used during the
adjustments to force-field perturbations (25). However, verbal
instructions might potentially impact the learning process,
and verbal reports have their limitations in characterizing the
explicit component. Recently, Schween et al. (26) used a novel
approach to access the explicit strategies used during force-
field adaptation. The authors showed that subjects can volun-
tarily control aspects of the force compensation and report
their explicit strategies with the untrained limb, providing
evidence of explicit learning mechanisms during force-field
adaptation. However, as stated earlier, it is unknown if the
required changes in the applied force can be acquired based
solely on explicit information of the required force-velocity
relationship.

Examining the features of motor learning has also pro-
vided a way to understand the underlying learning mecha-
nisms, specifically intentional adjustments to motor output.
For example, an important property demonstrated for motor
adaptation is savings—faster relearning in response to the
reexposure to a previously experienced movement perturba-
tion. Savings has been shown for many types of motor per-
turbations: rotations of movement visual feedback (27–47),
saccade target displacements (48, 49), prism displacements
(50–52), novel gait patterns (53–56), and novel arm reaching
dynamics (57–62). Recent work has demonstrated that early
savings of adaptation to force-field perturbations is based on
the initial recall of the previous performance (1), where sin-
gle-trial adaptation (i.e., the temporal patterns of force)

following a 24-h break period matched performance at the
end of the initial training session. Furthermore, studies
using visual perturbations have suggested that savings is
largely based on an explicit learning strategy (29, 41), where
adaptive changes occur based on conscious, intentional
strategies. These studies provide insight into the potential
mechanisms that produce early savings/recall of motor ad-
aptation. Yet, the extent adjustments to motor output based
on explicit feedback can be recalled is generally unknown.

Here, we examined the extent explicit visual feedback can
be used to intentionally learn motion state-dependent force
patterns and the subsequent recall of this learning. Rather
than parse the contribution of explicit strategies during motor
learning to physical perturbations (26), we instead examined
the learning and recall achieved by subjects when provided
explicit visual feedback information of the required force pat-
tern with no physical perturbation-induced errors. Specifically,
we were interested in the extent explicit visual feedback would
lead to adjustments in the applied temporal force patterns and
the earliest savings achieved (i.e., the recall) after a single trial
reexposure to the explicit visual feedback following a decay
and washout period. We compared learning, decay, and recall
to a control group that experienced physical force-field pertur-
bations. In the experimental condition, participants made
error-clampmovements andwere given continuous visual rep-
resentations of both the required force pattern (based on the
movement velocity) and their applied lateral force pattern.
During training, subjects were instructed to make the two
traces overlap. In contrast, the control group experienced phys-
ical force-field perturbations and the accompanying multisen-
sory (visual and proprioceptive) errors due to movement
disturbance. In both groups, using error-clamp trials, we com-
pared the learning rate, single trial early savings/recall, and sta-
bility of the experimental (explicit visual feedback) learning
group to the standard (force-field) learning control group.
Based on the previous findings from visuomotor rotation
(VMR) studies that suggest the majority of savings is due to
explicit-based learning strategies (29, 32, 41), we hypothesized
that the explicit visual feedback learning group could learn the
required force-velocity relationship and would not only dem-
onstrate recall but also show similar levels of recall compared
with the force-field learning group.

MATERIALS AND METHODS

Participants

Forty right-handed participants (25 females; aged 25 ± 4 yr)
without known neurological impairments were recruited
from the University of California, Davis, community to partic-
ipate in the study. Handedness of the subjects was measured
by the Edinburgh Handedness Inventory (63). All participants
were right-hand dominant and used this hand to complete
the experiment. Each participant only performed a single ex-
perimental paradigm. The study protocol was approved by
the University of California, Davis Institutional Review Board,
and all participants gave written informed consent.

Experimental Apparatus

Experiments were conducted using the Kinarm End-Point
Lab (BKIN Technologies), a two-jointed robotic manipula-
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ndum that records the velocity, position, and force exerted on
the handle of the manipulandum arm. Participants were
seated in front of the robotic manipulandum at a height where
they could grip the right manipulandum handle at their lower
chest level and rest their forehead comfortably on the system’s
headrest. They gazed into a horizontal mirror displaymounted
directly under a downward-facing LCD monitor (1,920 � 1,080
pixel resolution and 60 Hz refresh rate) that projected the vis-
ual feedback from the task onto the mirror. Participants’ view
of the right forearm and hand position was occluded by the
mirror and only a solid white circular cursor (0.3 cm in diame-
ter) was shown to match the handle position. During the
experiments, the robotic manipulandum continuously meas-
ured hand position, velocity, and forces applied by participants
at a sampling rate of 1,000 Hz while simultaneously exerting
external forces at the handle to probe their adaptation to the
external perturbations.

Experimental Paradigm

Two experiments were designed to assess motor learning
with different types of feedback: standard, physical velocity-
dependent force-field (vFF) perturbations and explicit visual
feedback of the equivalent vFF perturbations if it was
actually applied. Forty participants were divided evenly into
the force-field (FF) learning group (n = 20) and the explicit
visual feedback (EVF) learning group (n = 20) and each par-
ticipant only performed a single experimental paradigm. By
comparing the results obtained from the two groups, we
aimed to evaluate the influence of explicit visual feedback
information on the adjustment of motor output (i.e., the
applied force) during reaching arm movements and the
retention and early savings/recall of thismotor learning.

For both experiments, participants gripped the handle of
the robotic manipulandum and were asked to make rapid
point-to-point reaching movements between two red circular
targets at the center of the screen positioned at 20 and 30 cm
away from the body on the sagittal axis (Fig. 1A). To simplify
presentation, we refer to movements from the 20 cm target to
30 cm target to be 90� movements, and movements from the
30 cm target to 20 cm target to be 270� movements. The cur-
sor representing the hand position was shown throughout the
experiment. In each trial, to encourage participants to make
rapid movements, subjects were given visual and auditory
feedback about the speed of their movement, indicated by a
filled color of green in the end target and a pleasant beep tone
when the peak movement velocity was within a range of
0.25–.35 m/s and movement duration was �800 ms.
Movements above or below the desired range were followed
with a fill color of red (too fast) or yellow (too slow), respec-
tively, and no auditory feedback was given.

Four different trial types were used throughout the experi-
ments (see Fig. 1B): null trials, FF trials, EVF trials, and error-
clamp (EC) trials. Null trials allowed the participant to con-
trol the movement of the manipulandum and no external
force was applied by the robot’s motors. In EC trials, the
robot motors inhibited lateral movements by the subject,
maintaining a straight movement trajectory between targets
by applying a stiff one-dimensional spring (6 kN/m) and a
damper (150 Ns/m) in the axis perpendicular to the reach
direction (2, 10, 64, 65). Horizontal hand displacement was

limited to <1.2 mm and �0.2 mm on average for all partici-
pants. By containing participants’movement in this fashion,
the robot was able to keep the lateral errors very small so
that the temporal patterns of compensatory force partici-
pants applied could be measured independently of feedback
responses driven by errors. EC trials were used to assess lev-
els of adaptation throughout the experiments. During FF tri-
als, the robot motors enacted a force on the right
manipulandum handle that was proportional in magnitude
by a scale of k and orthogonal in direction to the velocity of
the movement determined by:

Fx

Fy

� �
¼ sk

0 �k
k 0

� �
_x
_y

� �
; k ¼ 15Ns=m ð1Þ

where Fx and Fy are the force vectors applied in the horizon-
tal and vertical directions, respectively. _x and _y are the corre-
sponding velocity vectors. sk = þ 1 and sk = �1 determined
the directions of the force-field: clockwise (CW) or counter-
clockwise (CCW; an example of the force-field is shown in
Fig. 1B). For null, FF, and EC trials, only two red circular tar-
gets and the cursor were shown on the screen. During the
EVF trials, participants were constrained to make straight
movement in the force channel between the two targets and
the error-clamp was used to measure the lateral force that
participants exerted. No physical force-field was applied;
instead, we showed the subject the visual feedback of the
ideal velocity-dependent force pattern based on the relation-
ship described in Eq. 1 (dark blue curve shown in Fig. 1B)
and the actual force pattern participants exerted (light blue
curve shown in Fig. 1B) in real-time on the screen. The real-
time ideal force-field profiles were determined by calculating
the force vectors using Eq. 1 with the instantaneous hand ve-
locity measured by the robot. This was then were plotted as
points whose distance to the line connecting the two targets
is the force vectors multiplied by a display constant d, where
d = 1.5 cm/N (e.g., 1 N force is plotted as a point 1.5 cm away
from the midline). The actual force participants exerted was
plotted with the same d to ensure that the two force profiles
shown on the screen were on the same scale. The display
constant dwas chosen to be 1.5 cm/N to provide well-propor-
tioned visual feedback that similarly match the displace-
ments when subjects in the FF group experienced physical
perturbations. Due to the high 1,000 Hz sampling rate of the
robot, participants could observe continuous curves of the
force profiles on the screen. For example, at tms after move-
ment onset, the ideal force-field vector and actual exerted
force vector in the range of [0,t] ms were calculated and plot-
ted on the screen. On the next frame (t þ 1 ms), the two vec-
tors in the range of [0, t þ 1] ms were plotted. The two
curves continued to be plotted as subjects made reaching
movements. After the subject reached the end target, the
two complete force traces stayed on the screen for another
500ms until the end of the trial. Both FF and EVFwere given
only on 270� movements, and the directions of the FF and
EVF (CW EVF was plotted on the right side of the midline
and CCW EVF was plotted on the left side of the midline)
was counterbalanced across participants.

Experimental Task

The structure of the FF experiment was similar to the one
proposed in our previous work (1), illustrated in Fig. 1C. We
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instructed participants to make smooth straight movements
to the targets and make as many successful movements as
possible in both the 90� and 270� reaching directions. The
instructions were given before the experiment and were
repeated before training and reexposure periods to remind
subjects of the goal for their movements. Twenty partici-
pants (10 experienced the CW FF and 10 experienced the

CCW FF) first completed 80 null trials to become familiar
with the experimental setup and desired movement speed.
During the baseline period, eight EC trials were dispersed
pseudorandomly in 120 null trials to measure the baseline
adaptation level before participants experienced the FF per-
turbations. After the baseline period, participants experi-
enced the adaptation period during which the FF was

C
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suddenly introduced after an initial 15 pretraining trials (13
null trials and 2 EC trials). Adaptation trials began with a
sequence of EC-FF-EC trials (red dashed box in Fig. 1C) to
measure the single-trial adaptation to the FF by subtracting
the adaptation on the pre-EC trial from the adaptation on
the post-EC trial. Participants completed 100 training trials
with 20 pseudorandomly interspersed EC trials to measure
the adaptation levels during training (after the FF perturba-
tions were introduced, EC trials were applied on all 90�

movements). For 270� movements, the ratio of FF-to-EC tri-
als was 2:1 for the first 9 training trials, 5:1 for the middle 84
training trials, and 4:3 for the last 7 trials. The higher ratio
used at the beginning and late stages of the training were to
ensure an accurate measurement of the initial and final ad-
aptation levels. Immediately following the adaptation pe-
riod, participants experienced a decay and washout period
consisting of 60 consecutive EC trials to measure the adapta-
tion decay and an additional 50 null trials to ensure their
performance returned to baseline levels [5 EC trials were
pseudorandomly interspersed with these 50 null trials (a 9:1
ratio of null trials to EC trials) to measure the final adapta-
tion levels toward the end of the washout period]. After the
washout period, participants were reexposed to the FF per-
turbations and experienced 100 trials with the same struc-
ture as the training trials described earlier. The same EC-FF-
EC triplet was used at the beginning of the reexposure period
to measure the initial retention and early savings/recall of
the initial learning (after a single trial of reexposure).

The EVF experiment was designed following the same ba-
sic experimental protocol as the FF experiment (Fig. 1C)
except the FF trials were replaced with EVF trials. During the
EVF trials, participants (n = 20, 10 experienced the CW EVF
and 10 experienced the CCW EVF) were instructed to make
smooth movements and match their actual force profile to
the ideal force profile by applying a lateral force on the han-
dle as they made the straight movements between targets,
while they saw two curves on the screen as they made reach-
ing movements. If subjects matched the explicit force pro-
files perfectly, the temporal pattern of the applied lateral
force would match the force required to fully compensate for
an equivalent velocity-dependent FF perturbation. To
ensure the same measurements of learning for the EVF
experiment, EC trials were dispersed in the exact same way
as in the FF experiment. Consistent with the FF experiment,
the instructions were given before the experiment and were
repeated before training and reexposure periods. No specific
instructions were given to notify subjects about the EC trials.
Furthermore, we were interested in the extent participants

could compensate for the physical FF perturbations after
training with the EVF only. To achieve this goal, we sparsely
added two FF trials in the first 80 familiarization trials to
measure the hand deviation when participants were briefly
exposed to the FF. A high ratio (40:1, null to FF trials)
ensured that participants did not learn from these two FF tri-
als as well, which was confirmed by the adaptation levels
obtained during the baseline period (see results). In addition,
two FF trials were pseudorandomly interspersed in the 15 EVF
trials that were added immediately after the reexposure trials
at the end of the experiment. We used these two FF trials at
the end of the experiment to examine the extent the motor
output based solely only the EVF could compensate for the
physical FF perturbations. Participants were not informed of
the FF perturbations throughout the experiment.

Data Collection and Statistical Analysis

Throughout both experiments, EC trials (in the 270� direc-
tion) were used tomeasure the lateral forces subjects applied
to compensate for the velocity-dependent force-field pertur-
bation (FF group) or match the explicit visual feedback to the
ideal force profiles (EVF group). To fully compensate for the
vFF perturbation, subjects needed to apply a lateral force
that is equal and opposite in magnitude of the ideal pertur-
bation force pattern during movement that was calculated
by the movement velocity during the EC trials. For the FF
group, numerous studies have shown that the lateral force
exerted during the EC trials provides a robust measurement
of the predictive feedforward adaptation to the vFF perturba-
tion (3, 4, 11, 66, 67). In the analysis, movement and the cor-
responding kinematic data for each individual trial were
centered on the peak velocity with a temporal window of
1,200 ms (±600 ms, where 0 ms is the moment when the
movement reaches peak velocity). This provides an align-
ment of all movements in the same temporal window. The
adaptation coefficient (AC) was used as a metric to quantify
the adaptation, which was computed by linearly regressing
the lateral force exerted during the EC trials to the ideal force
determined by the movement velocity (1–4, 10, 11, 65, 67,
68). To counter any initial biases, mean baseline force pro-
files (measured from preadaptation ECs placed throughout
the baseline blocks) were subtracted from subsequent force
profiles on an individual basis (2–4, 10, 11, 65–67). All analy-
ses were performed in the same way for both the FF and EVF
groups to ensure consistency and unbiased comparisons.

As in our previous work (1), the percent recall during reex-
posure was quantified by determining the slope of the
regression (linear mixed-effects model) between the force

Figure 1. Experimental setup and paradigm. A: subjects made reaching movements away (90�) and toward (270�) the body along the midline between
two circular targets while holding the handle of the robotic manipulandum. B: there were four different trial types used throughout the experiments: null
trials, velocity-dependent force field (FF) trials, error-clamp (EC) trials, and explicit visual feedback (EVF) trials. Null trials were movements during which
no external force was applied by the robot motors. During FF trials, the robot motors applied a force on the handle that was proportional in magnitude
and orthogonal in direction to the velocity of the movement (orange arrow). During EC trials, the robot motors constrained the movements in a straight
line toward the target by inhibiting movements perpendicular to the target direction. During the EVF trials, participants were constrained to make straight
movements between the two targets with the error-clamp and were shown the visual feedback of the ideal velocity-dependent force-field pattern (dark
blue curve) and the actual force pattern participants exerted (light blue curve) in real-time on the screen. The FF triplet and EVF triplet were used to mea-
sure the learning in response to the FF perturbation and the EVF, respectively. C: the experimental protocol. The subjects in the FF and EVF followed
the same basic experimental protocol as the one depicted in the panel except the perturbation trials were different (FF trials for the FF group and EVF tri-
als for the EVF group). In the EVF experiment, subjects briefly experienced two FF trials in the first 80 familiarization trials to measure their hand devia-
tion (dashed lines). This was then compared with two FF trials randomly added at the end of the reexposure period (not shown) to measure how
subjects trained with the EVF responded when the FF was actually applied.
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profile late in training (the last 10 trials of initial training,
Fig. 2B) and the force profile on the second EC trial of the EC
triplet during reexposure (Fig. 5A). In this case, the model
took the form FP reexposure � FP late training þ (1 þ FP
late training jsubject). The random effects of the subjects for
the recall were taken into consideration in the model. The
regression slope was computed for each subject and scaled
by 100 to obtain a percentage of recall.

Data were analyzed offline using Matlab (69) (The
MathWorks, Natick, MA) and R 3.6.2 (r-project.org; 70). Trials
that had very slow/fast movement speeds (peak speed <0.2
m/s or>0.5 m/s) or abnormal force levels (peak force>15 N or
peak force < �5 N) were excluded (�3% of total trials for FF
group and �5% of total trials for EVF group). We tested the
main effect of group (FF and EVF) on the amount of savings/
recall and retention of the adaptation with a linear mixed-
effects model (LMM) in R using the lmerTest package (71) with
the fixed effects of group (FF and EVF) and period (different
trial periods in the experiment, e.g., early learning, middle

learning, and late learning period; first 10, middle 10, and last
10 training trials, respectively) and random effect of subjects.
The model was estimated using the restricted maximum like-
lihood method (REML) and the significance was obtained
using Kenward–Roger and Satterhwaite’s approximations
with pbkrtest package (72). If significance was identified, post
hoc tests were performed using the emmeans package and
adjusted for multiple comparisons using Bonferroni–Holm
corrections. Effect size (d) was calculated using Cohen’s d (73)
measurement (for LMM analysis, generalized effect size was
computed following similar procedures of Cohen’s dmeasure-
ment using the eff_size function in the emmeans package). For
all tests, the significance level was set to 0.05. In all cases,
group data are presented asmeans ± SE, and estimation of the
proposed model coefficients was reported with 95% confi-
dence intervals. To consider the potential effect of the pertur-
bation directions (CW and CCW) on adaptation, for each LMM
model, we included the perturbation direction as a main
effect and found no significant main effect or interaction
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involving the perturbation direction. Thus, the data from CW
and CCW perturbations were collapsed together for all of the
analysis.

RESULTS

Motor Learning: Force-Field Perturbations versus
Explicit Visual Feedback

As described earlier, all subjects experienced the same basic
experimental paradigm. EC trials were randomly distributed
to measure the lateral force profiles subjects applied and ad-
aptation coefficients were determined on these trials to quan-
tify the time course of motor learning (see MATERIALS AND

METHODS). During the baseline, subject made reaching move-
ments between the two targets without any perturbations/
feedback. The average adaptation coefficients (computed
over the 8 EC trials during baseline) were not significantly dif-
ferent between subject groups (0.0012±0.0053 for the FF
group and 0.0056±0.0051 for the EVF group; two-tailed
unpaired sample t test, P> 0.57, d = 0.19) and not significantly
different from zero (two-tailed one sample t test, P > 0.81, d =
0.052 for the FF group and P > 0.28, d = 0.25 for the EVF
group).

Before training, two pretraining trials were applied to mea-
sure the adaptation coefficient right before exposure to the FF
and EVF. Subjects in both groups did not show significantly
different coefficient levels from baseline (�0.015±0.0066 for
the FF group and 0.0013±0.0070 for the EVF group; two-
tailed paired sample t test, P > 0.11, d = 0.59 for the FF group
and P> 0.68, d = 0.16 for the EVF group). The aforementioned
results reveal that subjects in the EVF group did not show
coefficient levels significantly different from zero, nor signifi-
cantly different from the FF group in both the baseline and
pretraining trials, demonstrating that they did not adapt from
the FF perturbations sparsely inserted during the familiariza-
tion trials (see MATERIALS AND METHODS). To investigate the
potential difference in learning, we compared the coefficient
after the perturbation was applied/feedback was given (FF or
EVF) between the two groups at three different periods during
training (early training: first 10 training trials, middle training:
middle 10 trials of training, and late training: last 10 training
trials). During the entire training period, we observed a fast
progression of learning to the given perturbation/feedback in-
formation for both groups (Fig. 2A). However, during the
early, middle, and late training periods, there were differences
in the learning levels (adaptation coefficients, early: 0.12±
0.019, middle: 0.51±0.041, late: 0.63±0.033 for the FF group;
early: �0.027±0.093, middle: 0.67±0.14, late: 0.86± 0.077 for
the EVF group). An LMM (see MATERIALS AND METHODS) was
used to investigate the fixed effects of group and training pe-
riod and random effect of subjects on adaptation coefficients
at different periods of training. We found that there was a sig-
nificant main effect of the training period on learning levels
[F(2,74.31) = 68.89, P < 0.00001] and a significant interaction
between the two main effects [F(2,74.31) = 5.17, P < 0.008].
However, there was no significant main effect of group [F
(1,39.13) = 1.60, P > 0.21]. Post hoc tests were performed and
showed that subjects in both groups adjusted to the perturba-
tion/feedback rapidly and their overall learning during the
middle training period was significantly greater than the

learning during the early training period (P = 0.0001, d = 1.43
for the FF group and P < 0.0001, d = 2.55 for the EVF group).
All subjects almost reached their asymptotic performance
during the middle training period and their learning did not
increase significantly between the middle and late training
periods (P > 0.55, d = 0.43 for the FF group and P > 0.13, d =
0.69 for the EVF group). There was not a significant difference
in the adaptation coefficient between the groups during the
early and middle training periods (P > 0.13, d = 0.53 for early
training and P = 0.10, d = 0.59 for middle training). However,
subjects in the EVF group demonstrated a higher learning
level than the subjects in the FF group during late training
(P = 0.023, d = 0.85).

The temporal force profiles for both groups for the three
training periods are shown in Fig. 2B. Here, the ideal force
pattern (dashed lines) was determined by scaling the tempo-
ral vertical velocity profile with the force parameter 15 Ns/m.
Interestingly, we found that subjects in the FF group moved
significantly faster at peak velocity (early: 0.34±0.01 m/s,
middle: 0.33±0.01 m/s, late: 0.32±0.011 m/s) than the sub-
jects in the EVF group during training (early: 0.27±0.0067
m/s, middle: 0.24±0.011 m/s, late: 0.25±0.0081 m/s) which
produced a difference between the ideal force patterns of the
two subject groups (early: 5.04±0.16 N, middle: 4.89±0.15
m/s, late: 4.77±0.17 for the FF group; early: 4.07±0.10 N,
middle: 3.67±0.17 N, late: 3.79±0.12 N for the EVF group). A
LMM (fixed effect: group and training period, random effect:
subjects) analysis showed that both fixed effects on the peak
ideal force were significant [F(1,36.88) = 44.79, P < 0.00001
for the effect of group, and F(2,71.49) = 3.61, P < 0.033 for the
effect of the training period]. The interaction between the
two fixed effects was not significant [F(2,71.49) = 0.64, P >
0.5]. Post hoc results indicated that for the three training
periods, all peak ideal force levels for the FF group were sig-
nificantly greater than those for the EVF group (P < 0.0001,
d > 1.79 for all cases). This is possibly due to the visual feed-
back provided to the subjects in the EVF group; requiring
subjects to match the two real-time visual force profiles pos-
sibly slowed down hand movements. Another possibility
could be that subjects slowed down to make matching the
two force profiles easier. We tried tominimize these possibil-
ities by repeating the instructions before the training and
reexposure periods to remind subjects to move within our
desired duration and velocity range (see MATERIALS AND

METHODS). However, despite the observed differences in the
peak ideal force level, the calculation of the adaptation coef-
ficient takes into account these differences in movement
speed, allowing a comparison between the two groups.

Our previous study found that measuring the force level
150 ms before and after the mid-movement point provided a
good measure of the adaptation specific to a velocity- or
position-dependent force-field perturbation, respectively
(10). In a similar way, to quantify any potential differences
along the temporal force pattern, we analyzed the force data
within a 100-ms window centered at peak velocity, and 150
ms before and after the peak velocity point (gray windows in
Fig. 2B). A LMM was used to investigate the fixed effect of
group, training period, and window of force on the temporal
force profiles (Table 1). Analysis of the adaptive response
within these windows revealed similar results as the analysis
on adaptation coefficients; there were no significant effect of
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subject group [F(1,38.14) = 0.0054, P > 0.94] nor the interac-
tion among the three fixed effects [F(4,289.19) = 1.27, P >
0.28]. However, the effects of training period [F(2,292.43) =
191.67, P < 0.0001], window of force [F(2,289.19) = 18.47, P <
0.0001], interaction between training period and group [F
(2,292.43) = 10.00, P < 0.000064], interaction between train-
ing period and window of force [F(4,289.19) = 3.03, P <
0.019], and interaction between group and window of force
[F(2,289.19) = 8.08, P < 0.00039] were significant. Post hoc
tests showed that there were significant differences in the
windowed force at peak velocity during early training (P <
0.022, d = 0.88) and 150 ms before peak velocity during late
training (P = 0.0026, d = 1.21) between the two groups.
Despite these differences, we could see that subjects in the
EVF group adjusted the temporal force pattern at a similar
rate to subjects in the FF group that experienced the physical
vFF perturbations during the three training periods (P >
0.063, d < 0.66 for all cases). In line with the analysis of ad-
aptation coefficients, subjects in both groups learned quickly
from the perturbation/feedback and exerted significantly
greater force for all three windows of force during middle
training compared with early training (P < 0.023, d > 0.85
for all cases). The results of the adaptation coefficients and
windowed force suggested that subjects in the FF and EVF
groups could learn the force-velocity relationship given ei-
ther real physical perturbations or explicit visual feedback of
the required force pattern based on the movement velocity.
The EVF group achieved greater learning of the force-veloc-
ity relationship from the given explicit visual feedback than
the FF group who learned from physical perturbations at the
end of the training despite the finding that the peak force
levels were similar between the two groups.

The learning curve for the FF group starts earlier within
the first 35 trials and adapted to the physical perturbations
in a more gradual way than the EVF group adjusted motor
output in response to the visual feedback. The adaptation
coefficient for the EVF group increased more abruptly than
the FF group, between trials 35 and 50. To better characterize
the learning processes for the two groups, we fitted the data
with a logistic growthmodel:

An ¼ K

1 þ K�A0
A0

� �
e�rn

where An is the adaptation coefficient level at trial number n,
K is the carrying capacity (maximum adaptation coefficient
level subjects could achieve), A0 is the initial adaptation
coefficient level, and r is the growth rate for the learning
curve. The fitted learning curves are plotted in Fig. 2A (or-
ange dashed line for the EVF group and blue dashed line for
the FF group). As seen, the logistic model characterized the

learning well for the two groups (R2 = 0.64 for EVF group and
R2 = 0.72 for the FF group). The carrying capacity for the EVF
group is KEVF = 0.85±0.089 and learning rate rEVF =
1.34±0.79, whereas for the FF group, KFF = 0.59±0.029 and
rFF = 1.18±0.35. These results were consistent with the ones
we obtained from the three periods during training. The EVF
group learned the required force-velocity relationship given
only the visual feedback better than the FF group learned
this relationship given the physical perturbations (KEVF >
KFF). At the same time, the EVF group reached the asymptote
of learning from the initial level slightly faster than the FF
group (rEVF > rFF), but the difference was negligible.

Decay of Adaptation: Force-Field Perturbations versus
Explicit Visual Feedback

Immediately following the training, subjects in both the
FF and EVF groups completed 60 consecutive EC trials to
capture the decay of learning. These trials were followed by
50 null trials to washout the remaining learning and return
performance to baseline levels. Figure 3A shows the decay of
the measured adaptation coefficients, and Fig. 3B shows the
relative decay as a percentage determined by normalizing
the adaptation coefficients by the learning level reached at
the end of training. We observed a fast decay of the adapta-
tion coefficient for both groups (Fig. 3A), with levels decay-
ing over 20% within the first five EC washout trials (Fig. 3B).
Despite a significantly higher level of learning achieved at
the end of training by the EVF group, the adaptation coeffi-
cient for the EVF group decayed faster than the learning for
the FF group. At the end of the EC decay period (last 5% of
the EC decay trials), the retention for the FF group was sig-
nificantly higher than the EVF group (0.13±0.027 for the FF
group and 0.013±0.015 for the EVF group; two-tailed
unpaired sample t test, P = 0.0037, d = 1.22). Adaptation coef-
ficient levels decayed further over the null washout trials
and returned to levels not significantly different from zero
(0.0045±0.01 for the FF group and �0.020±0.013 for the
EVF group; two-tailed one sample t test, P > 0.68, d = 0.093
for the FF group and P> 0.13, d = 0.34 for the EVF group).

For the decay percentage of the adaptation coefficient
shown in Fig. 3B, we observed similar results; the decay of
the learning level over the consecutive ECs for the EVF group
was greater (compared with the learning level at the end of
training) than the FF group. The percentage of learning at
the end of the EC decay period was significantly greater for
the FF group compared with the EVF group (20.22±4.54%
for the FF group and 1.62± 1.87% for the EVF group; two-
tailed unpaired sample t test, P = 0.005, d = 1.20). The FF
group could still retain �20% of their learned adaptation,
whereas the EVF group completely abandoned the learned

Table 1. The windowed force (within 100 ms) at 150 ms before the peak velocity, at the peak velocity, and 150 ms af-
ter the peak velocity for both the FF and EVF groups during the initial training

Early Training Middle Training Late Training

Pre (150 ms Before) Peak Velocity Post (150 ms After)

Pre (150

ms Before) Peak Velocity

Post (150

ms After)

Pre (150 ms

Before) Peak Velocity

Post (150

ms After)

FF 0.45 ± 0.11 N 0.64 ±0.10 N 0.30 ±0.078 N 1.12 ± 0.14 N 2.38 ± 0.21 N 1.33 ± 0.15 N 1.62 ± 0.16 N 2.79 ± 0.13 N 1.52 ± 0.10 N
EVF �0.073 ±0.036 N �0.047 ±0.037 N �0.094 ±0.032 N 1.69 ± 0.41 N 1.97 ± 0.41 N 2.55 ± 0.24 N 1.62 ± 0.35 N 2.46 ± 0.27 N 1.94 ± 0.24 N

Data are presented as means ± SE. EVF, explicit visual feedback; FF, force field.
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adjustment to motor output after 60 EC trials. As in Fig. 3A,
at the end of the null washout, the percent learning for sub-
jects in both groups was not significantly different from zero
(0.16± 1.84% for the FF group and �2.6±2.0% for the EVF
group; two-tailed one sample t test, P > 0.93, d = 0.0061 for
the FF group and P > 0.21, d = 0.39 for the EVF group) or
between groups (two-tailed unpaired sample t test, P > 0.32,
d = 0.33), confirming that at the end of washout period, sub-
jects in both groups returned their performance to baseline
before reexposure to the perturbation/feedback. The afore-
mentioned results suggest that learning based on explicit
visual feedback of the required motion-state/force relation-
ship was less stable than learning this relationship based on
experiencing the physical perturbations.

Single-Trial Savings/Recall of Motor Learning: Force-
Field Perturbations versus Explicit Visual Feedback

After the washout period, subjects in the FF and EVF
groups were reexposed to the perturbation/visual feedback.
The composition of the reexposure block was identical to the
initial training block (see Fig. 1C). To examine the time
course of adaptation savings/learning recall at the beginning
of the reexposure, the first three trials consisted of a single
trial of the perturbation/visual feedback trial flanked by two
EC trials (force-field/visual feedback triplet, see MATERIALS

AND METHODS). The first EC trial assessed initial retention of

the adaptation after washout. After a brief introduction of
the perturbation/visual feedback, the second EC trial, when
compared with the first, quantified the single-trial adjust-
ment to the perturbation/visual feedback—the earliest
assessment of adaptation savings/recall. For the first EC trial,
both subject groups had very low adaptation coefficient lev-
els due to the preceding washout (Fig. 4, 0.028±0.011 for the
FF group and 0.0014±0.01 for the EVF group). After experi-
encing only one single perturbation/visual feedback trial, we
observed a rapid increase in adaptation coefficient level for
both groups on the second EC trial. Interestingly, the EVF
group exhibited greater learning than the FF group in this
trial (0.32 ±0.040 for the FF group and 0.54±0.083 for the
EVF group). Analysis using an LMM (see MATERIALS AND

METHODS) with fixed effects of group and EC trials (pre-EC
and post-EC trials) and random effects of subjects revealed
that there was significant interaction between the two fixed
effects [F(1,115.24) = 13.79, P < 0.001]. Post hoc tests showed
that there was no significant difference in the first pre-EC
trial between the two groups (P > 0.54, d = 0.14). However,
subjects in both groups rapidly recalled the learned relation-
ship after the brief reintroduction of the perturbation/visual
feedback (P < 0.0001, d = 1.52 for the FF group and P <
0.0001, d = 2.72 for the EVF group), and the EVF group had a
significantly greater adaptation coefficient compared with
the FF group (P < 0.001, d = 1.06), suggesting greater recall.
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Figure 3.Decay of the adaptation coefficient over consecutive error-clamp (EC) decay trials and null washout trials. A: adaptation coefficients are plotted
as a function of trials number for the force field (FF) and explicit visual feedback (EVF) groups (blue and red traces, respectively). The solid color traces
represent the mean adaptation coefficient levels and the shaded color areas represent one SE. The bar graphs represent the mean adaptation level at
the end of the EC decay (last 5% of the EC decay trials, first gray shaded region) and the end of null washout trials (last 5% of the null washout trials, sec-
ond gray shaded region). B: same data shown in A, but learning level is represented as a decay percentage (compared with the adaption coefficient
level at the end of training) as a function of trial number. The solid color lines are the mean percentage level and the shaded color areas represented
one SE. Similar to A, the bar graphs show the percentage of learning that remained at the end of the EC decay and null washout trials. In all bar graphs,
black dots represent the individual subject data and the vertical error bars represent one SE.
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Following the force-field/visual feedback triplet, subjects in
both groups rapidly reached their asymptotic performance in
the middle of the reexposure (0.53±0.043 for the FF group
and 0.97±0.090 for the EVF group). By the end of the reexpo-
sure period, both groups had similar learning levels to their
learning levels at the end of initial training (0.59±0.049 for
the FF group and 0.85±0.077 for the EVF group). Analysis of
the adaptation coefficients using an LMMwith fixed effects of
group and experimental period (the end of the initial training
and reexposure period) and random effects of subjects
showed that there was significant effect of group [F(1,116.46) =
32.14, P< 0.0001], but there was no significant effect of exper-
imental period [F(1,38.69) = 0.80, P > 0.38] nor an interaction
between the two effects [F(1,116.46) = 1.00, P> 0.32].

To better compare the recall achieved by the two groups,
the temporal force profiles following the single perturbation/
visual feedback exposure in the initial training and reexpo-
sure periods are shown for both groups in Fig. 5A, respec-
tively. To quantify the differences between the temporal
force profiles, we adopted the same approach described ear-
lier and analyzed the force data within a 100-ms window
centered at peak velocity, 150 ms before the peak velocity,
and 150 ms after the peak velocity point (gray windows in
Fig. 5A). For both groups, the windowed force after a single
FF/EVF trial during the initial training and reexposure is
shown in Table 2. Using a LMM with fixed effects of group,
window of force and experiment period (the EC trials after a

single FF/EVF trial in the initial training and reexposure
periods), and random effect of subject, we found significant
effects of experiment period [F(1,188.23) = 143.91, P < 0.0001]
and window of force [F(2,184.75) = 4.86, P = 0.0088] on the
force output. The interaction between the effects of group
and window of force was also significant [F(1,188.23) = 12.24,
P < 0.0006]. The post hoc tests showed that the windowed
force (in all 3 windows) following a single FF/EVF trial in
reexposure was significantly greater than the force in the ini-
tial training for both groups (P< 0.015, d> 0.65 for all cases).
In the initial training block, the force in the three windows
was not significantly different between the two groups (P >
0.44, d < 0.28 for all cases). However, the EVF group applied
a significantly greater force at 150 ms before and after peak
velocity following a single EVF trial in reexposure than the
FF group (P < 0.012, d > 0.6), consistent with the analysis of
adaptation coefficients.

To quantify motor learning recall directly, we compared
the temporal force profile at the end of initial training (solid
red and blue traces in Fig. 2B, Late) and the force profile on
the second EC trial of the EC triplet during reexposure (solid
red and blue traces in Fig. 5A, Reexposure) (see MATERIALS

AND METHODS). (Note that recall is the comparison between
the compensatory patterns of force. The adaptation coeffi-
cient results presented in Figs. 2, 3, 4, and 5 are a comparison
of the compensatory pattern of force and the ideal force pat-
tern based on movement velocity.) As with the adaptation
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coefficients, the percent recall of motor learning for the
explicit visual feedback group was greater than that for the
force-field group, but this was not significant (EVF: 54.00±
11.28%, FF: 47.73±4.93%, P< 0.65).

Finally, we also assessed the initial single-trial learning
across groups for both initial training and reexposure blocks
that was determined as the difference in the adaptation coef-
ficients between EC trials immediately preceding and follow-
ing the single trial exposure to the perturbation/visual

feedback. Figure 5B shows the single-trial learning for reex-
posure as a function of the single-trial learning for initial
training. For both groups, the majority of the individual data
(small filled circles) are above the unity line (black dashed di-
agonal line), demonstrating that the single-trial learning in
the reexposure block was greater than the single-trial learn-
ing for the initial training block. The majority of the EVF
group’s data (filled red circles) and their mean (large filled
red diamond) are further away from the unity line than the
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FF group (blue symbols) signifying the greater recall
achieved by the EVF group. Analysis of the single-trial learn-
ing using an LMMwith fixed effects of group and experimen-
tal blocks (training and reexposure) and random effect of
subjects showed that there was a significant interaction
between the two fixed effects [F(1,78) = 5.39, P < 0.023]. The
post hoc tests showed the single-trial learning was signifi-
cantly greater in reexposure (0.28±0.041 for the FF group
and 0.51±0.10 for the EVF group) than the single-trial learn-
ing during initial training (0.072±0.020 for the FF group
and 0.026±0.041 for the EVF group) and demonstrated a
faster learning rate achieved by both groups (P < 0.022, d =
0.76 for the FF group and P < 0.001, d = 1.80 for the EVF
group). Even though subjects in both groups had similar sin-
gle-trial adaptation coefficient levels during initial training
(P > 0.58, d = 0.18), the EVF group had significantly greater
single-trial learning in reexposure compared with the FF
group (P = 0.0078, d = 0.86). In summary, the aforemen-
tioned results demonstrate learning recall following a single
trial of reexposure to the perturbation/visual feedback, but
the EVF group showed a greater change in single-trial learn-
ing compared with the FF group.

Adaptation to Explicit Visual Feedback in Response to
Physical Perturbations

The results shown earlier suggest that providing only
explicit visual feedback of the required motion-state/force
relationship allowed subjects in the EVF group to adjust the
applied force during the arm reaching movement to match
the pattern required to counter a (not experienced) physical
perturbation. These subjects reached a significantly greater
learning level than the FF group that experienced the actual
force-field perturbations. In addition, the EVF group demon-
strated greater single-trial learning of the motor adjustment
compared with the FF group after reexposure to the pertur-
bations/visual feedback. This prompts the question: how
would the EVF group perform if vFF perturbations were
applied following learning based only on the explicit visual
feedback? To answer this question, we added a sequence
consisting of 15 EVF trials and 2 randomly dispersed FF trials
to the end of the reexposure period in EVF experiment. We
investigated the performance by comparing the displace-
ments of handmovement trajectories (distance from the line
connecting the two targets) on these two FF trials to the dis-
placements on the two FF trials we sparsely applied during
the familiarization block to measure subjects’ baseline per-
formance (see MATERIALS AND METHODS). As previously
described, subjects in the EVF group showed no adaptation
at the end of the baseline period after they experienced the
two randomly applied FF trials. In Fig. 6A, the average trajec-
tories on the two baseline FF trials (black and gray dashed

lines) are plotted along with the average trajectories on the
two reexposure FF trials (black and gray solid lines). Even
when subjects in the EVF group were exposed for the first
time to the FF at the end of the reexposure block (solid
black trace in Fig. 6A), they compensated well for the per-
turbation; the displacements of the movement trajectories
were significantly reduced compared with the two baseline
trajectories. On the second exposure of the FF perturbation
(solid gray trace in Fig. 6A), subjects almost fully compen-
sated for the perturbation. We examined the displacements
at two time points: at the peak of the movement velocity
(Fig. 6B, left) and 150 ms after the velocity peak (Fig. 6B,
right). The perturbation resulted in greater displacements
later into the movement (at peak velocity: first FF trial dur-
ing familiarization: 1.52 ±0.16 cm, second FF trial during
familiarization: 1.79 ±0.30 cm, first FF trial during reexpo-
sure: 0.27 ±0.49 cm, second FF trial during reexposure:
�0.13 ±0.30 cm; 150 ms after peak velocity: first FF trial
during familiarization: 3.66 ±0.31 cm, second FF trial dur-
ing familiarization: 3.67 ± 0.20 cm, first FF trial during reex-
posure: 1.45 ±0.52 cm, second FF trial during reexposure:
1.01 ± 0.44 cm). An LMM was performed to examine the
fixed effects of trial type (first and second FF trial during
familiarization, first and second FF trial during reexposure)
and time-point of displacement (at the peak velocity and
150 ms after the peak velocity point) and random effect of
subject on the displacements of hand trajectories. Both
fixed effects were significant [F(3,133) = 30.26, P < 0.0001
for the effect of trial type and F(1,133) = 54.97, P < 0.0001
for the effect of time-point of displacement] while their
interaction was not [F(3,133) = 1.39, P > 0.24]. Post hoc tests
showed that for all four FF trials, displacements at 150 ms
after peak velocity point were greater than the displace-
ments at the peak velocity (P < 0.0089, d > 0.84 for all
cases). For both time points of displacement, there was no
significant difference in displacements between the first
and second FF trial during familiarization (P > 0.92, d <
0.21 for all cases). The displacements for the first FF trial
during reexposure was significantly reduced compared
with both FF trial during familiarization (P < 0.025, d >
0.92 for all cases). On the second FF trial during reexposure,
the displacements were further reduced but not signifi-
cantly different from the first FF trial during reexposure
(P > 0.9, d = 0.30 for velocity peak and P > 0.9, d = 0.33 for
150 ms after velocity peak). Therefore, when provided with
only explicit visual feedback of the required force-velocity
relationship, subjects in the EVF group were able to com-
pensate for the real vFF perturbations. Together, the results
from the FF and EVF experiments again suggest that sub-
jects can adjust motor output based on explicit visual feed-
back of the required motion-state/force relationship and

Table 2. The windowed force (within 100 ms) at 150 ms before the peak velocity, at the peak velocity, and 150 ms af-
ter the peak velocity for both FF and EVF groups after a single FF/EVF trial during the initial training and reexposure

Post (150 ms After) Peak Velocity Post (150 ms After)

Initial Training Reexposure Initial Training Reexposure Initial Training Reexposure

FF 0.17 ± 0.08 N 0.83 ±0.15 N 0.18 ± 0.072 N 1.61 ± 0.24 N 0.023 ±0.05 N 0.72 ±0.11 N
EVF �0.06 ±0.035 N 1.91 ± 0.43 N �0.033 ±0.044 N 1.71 ± 0.43 N �0.10 ± 0.055 N 1.20 ±0.26 N

Data are presented as means ± SE. EVF, explicit visual feedback; FF, force field.

STATE-DEPENDENT MOTOR LEARNING BASED ON VISUAL FEEDBACK

J Neurophysiol � doi:10.1152/jn.00520.2021 � www.jn.org 865
Downloaded from journals.physiology.org/journal/jn (071.197.105.166) on October 7, 2022.

http://www.jn.org


demonstrate recall of this learning even without experienc-
ing the movement errors from the physical perturbation.

DISCUSSION
In this study, we probed motor learning in two main

groups of subjects based on the type of information pro-
vided. Subjects in the force-field (FF) group experienced
standard velocity-dependent force-field perturbations to the
reaching armmovement. Subjects in the explicit visual feed-
back (EVF) group did not experience this physical perturba-
tion of the movement. Instead, on each trial, they moved
within a force channel that restricted movement along a set
path. During the movement, they were provided visual feed-
back of the lateral force produced during the movement as
well as the ideal force pattern based on the movement veloc-
ity. The latter is the temporal pattern of force that the subject
would be required to apply to counter a velocity-dependent
FF perturbation if it was actually experienced during the
movement/trial. Subjects were instructed to match the force
profiles in real time during the movement. Our aim was to
probe the extent subjects in the EVF group could 1) learn the
correct force pattern to counter the (nonexperienced) FF per-
turbations given only the visual feedback of the required
motion-state/force relationship, 2) maintain this learning
when the feedback was withheld, and 3) demonstrate recall
of learning when the explicit visual feedback was introduced
again. Even though the information provided to the two
groups was different, the assessment was not; the adaptation

coefficient, based on the ideal and applied temporal force pro-
files, was quantified on force channel trials that were exactly
the same for both groups. Thus, we compared performance
for the explicit feedback group to the group that experienced
the physical movement perturbations to quantify differences
in the time course of motor learning and decay, as well as the
amount of recall for the learned motion state-dependent
changes tomotor output.

Adaptation of Movement Dynamics Based on Visual
Information

Numerous studies have used visual information to exam-
ine motor adaptation and the savings of the learned motor
recalibration. For example, visuomotor rotation (VMR) is a
motor adaptation paradigm based on visual feedback pertur-
bations where subjects have to adjust for the discrepancy
between the actual arm movement and the visual feedback
provided (35, 74, 75). Previous studies using visuomotor rota-
tion paradigms have demonstrated learning and savings is
partially based on utilizing explicit knowledge of the motor
recalibration (29, 32, 41). Here, we modified the standard
force-field adaptation experiment (5) to more closely resem-
ble the visuomotor rotation perturbation. Subjects were
required to learn the motion-dependent force relationship,
but without any proprioceptive errors—only based on the
provided visual feedback of the required temporal force pat-
tern. Thus, we provided direct information of the required
change to motor output (21, 22) and were interested in the
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extent this explicit visual feedback could be used to inten-
tionally learn the requiredmotion state-dependent force pat-
terns. Our experimental group demonstrated recall of the
learning upon reexposure after having trained with explicit
visual feedback alone. Not only was recall observed in this
condition, but it was also similar to that observed in the con-
trol group (standard adaptation to physical force-field per-
turbations). However, we should note that our study was
limited in the extent it can quantify the concurrent contribu-
tion of both implicit and explicit processes in the adjustment
to novel movement dynamics. That is, our study demon-
strates that motor learning and recall can be achieved when
provided explicit information of the required force pattern
with no physical perturbation-induced errors. It does not
however isolate the explicit learning contributions during
the adaptation to physical FF perturbations for the FF group
(26), nor does it separate any implicit learning mechanisms
duringmotor learning based on the explicit visual feedback.

Thoughmuch of the literature on the use of explicit visual
feedback information to recalibrate motor output is from
VMR studies, there have been previous studies in which this
feedback is used to modulate grip force patterns (15–20). In
these studies, visual feedback was used to measure the
impact on learning and the control of grip force. Gibo et al.
(15) found that without force feedback subjects were unable
to couple grip and load force and that the absence of training
with explicit feedback led to a decrease in subsequent per-
formance. Using a similar handheld force transducer para-
digm, patients with impairments in hand function following
brain lesions of various causes (e.g., traumatic brain injury,
viral encephalitic, etc.) successfully reduced their grip force
control error after training with visual feedback of the
required force (17). These results demonstrate that the visual
representation of the required force pattern significantly
improves adaptation and learning, similar to previous stud-
ies (22) and the results described earlier. Although these
force pattern adaptation studies of grip force resemble our
experimental design, they did not base the temporal force
pattern on motion state (i.e., movement velocity) nor assay
learning recall. To our knowledge, there are no other force-
field adaptation studies based solely on explicit visual feed-
back of the required motion-state/force relationship that
have measured recall. Matthew et al. (76) recently demon-
strated that savings in the context of force-field learning
may be due to feedback adaptation rather than an explicit
reaiming strategy, although not in the context of explicit
feedback of the required force. Thus, although our results
suggest recall can result from providing only explicit infor-
mation of the required force-velocity relationship, there
remains an open question on the extent explicit-based learn-
ing strategies are the main component of savings for adapta-
tion to novel physical dynamics.

Contribution of Different Learning Mechanism

The different types of information provided to learn the
required force-velocity relationship resulted in different
time courses for motor learning (Fig. 2), strengthening the
argument that different mechanisms were engaged for both
groups. Although the ultimate goal is the same, improve-
ment by the FF group is more of a gradual process than for

the EVF group. In fact, the initial rise of the learning curve
for the EVF group is delayed compared with the FF group,
suggesting that subjects required a number of observations
before the correct relationship could be fully applied. In con-
trast, the FF group demonstrates a steadier, iterative increase
in learning starting from the introduction of the perturba-
tion. Despite this difference in how the EVF subjects learned
the required force-velocity relationship, the random FF trials
applied at the end of training (Fig. 6) provided clear evidence
that training with the feedback improved performance in
the FF even without experiencing the physical movement
errors. Note that the application of these FF trials at the end
of the experiment was done to avoid the complications of
increased limb stiffness in response to experiencing large
motor errors (77–79). In fact, we chose to assess learning and
subsequent recall through error clamp trials rather than FF
trials to avoid the issue of stiffness. This effect on perform-
ance in the FF raises the possibility to examine the syner-
getic effects, and possible interference, when both types of
information are provided during training.

Although the explicit visual feedback group demonstrated
similar recall, we observed faster decay of learning for the
EVF group compared with the FF group (Fig. 3). These
results suggest that learning based on explicit visual feed-
back of the required motion-state/force relationship was less
stable than learning this relationship based on experiencing
the physical perturbations. Decay of motor adaptation has
been demonstrated with the removal of movement feedback
and the passage of time (23, 64, 80–85), consistent with our
observation of overall decay in both conditions. However,
this does not account for why there is a faster decay among
the explicit visual feedback group. As with the learning
curves, this difference in decay suggests that different learn-
ing mechanisms are being utilized in each condition.
Aspects of this may be explained by the two-state sensorimo-
tor learning system (86) that posits there are two distinct
learning mechanisms, a fast process and a slow process, and
the division of sensorimotor learning into explicit and
implicit learning (23). Recent evidence has been found to sug-
gest that these two frameworks may have some overlap:
explicit learning may contribute to the fast-learning process
and implicit learningmay play a role in the slow learning pro-
cess (58, 87, 88). Early learning has been clearly associated
with fast time-scale processes and rebound effects associated
with slow processes have been shown later in learning,
although the stability of each was not assessed (58). In the
present study, the explicit visual feedback group could be
adjusting the applied temporal pattern of force based largely
on fast, explicit learning processes, whereas the force-field
group adapts based on a combination of fast (explicit) and
slow (implicit) learning mechanisms. However, this may only
be partially true, as is it still unknown (within the context of
adaptation to physical perturbations) whether slow and fast
learning mechanisms directly overlap onto implicit and
explicit learning, respectively.

Another potential (and related) explanation for the differ-
ence in learning stability between the EVF and FF groups is
that of sensory prediction error and task outcome error.
Sensory prediction errors (SPE) are the difference between
the expected and observed outcomes following a motor com-
mand. In contrast, task outcome errors (TE) are those based
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solely on information regarding task accuracy, commonly
provided through online task performance feedback. Previous
studies have suggested that TE drives explicit learning,
whereas SPE largely engages implicit learning mechanisms
(89, 90). However, recent work has shown that TE may serve
as a gain or contribute to implicit learning when provided in
parallel with SPE, rather than the two error types inducing
distinct learning mechanisms (91, 92). Nevertheless, TE alone
was not shown to be sufficient in producing implicit learning
(92), although it does engage explicit learningmechanisms. In
our design, participants in the EVF group were only provided
TE feedback, supporting this theory that it facilitates explicit
learning adaptation. The FF group likely utilized a combina-
tion of SPE and TE, providing feedback on their accuracy in
making a straight movement to the target location. It is likely
that the EVF group quickly abandoned the learned explicit
strategy when the TE feedback of the perturbationwas no lon-
ger presented. In contrast, the recalibration of movement in
response to the SPE for the FF groupwas a relativelymore sta-
ble change; a component of updating of the internal model of
limb movement dynamics persisted even when the informa-
tion was no longer present (93).

Motor Learning Recall versus Savings

In this study, we were focused on the earliest component
of savings, that following a single trial of reexposure. Our
previous study (1) showed that a significant amount of adap-
tation savings for the recalibration of movement in response
to force-field perturbations is initially due to the rapid recall
of previous performance. We trained subjects for different
durations on day 1 and then examined recall (using the same
EC triplet utilized in the current study) on day 2. The force
profiles on day 2 revealed a rapid recall of the previously
learned motor recalibration; the temporal pattern of force
following the first perturbation on day 2 closely matched
that at the end of day 1. This recall was highly dependent on
the initial training duration on day 1 and final adaptive state
(i.e., if subjects experienced a washout period at the end of
day 1). In the current study, the recall for the FF and EVF
groups accounted for a substantial amount of the motor
learning demonstrated during reexposure. That is, following
only a single trial of reexposure, subjects exhibited >50% of
the total learning level reached during reexposure to the
given perturbation/feedback information. Although there
was no significant difference in the recall between the two
groups, the EVF group demonstrated significantly greater
single trial learning compared with the FF group (Fig. 5). The
key difference between these two measures (recall vs. single
trial learning) is that the former is a comparison of the
applied force to the previous force profile at the end of initial
training whereas the latter is a comparison of the adaptation
coefficient at the start of initial training and reexposure. In
addition, the adaptation coefficient is dependent on the
applied force and the ideal force profile based on the move-
ment velocity. Due to these differences, it could be argued
that the recall is the more accurate comparison between the
two subject groups. That is, the relatively lower max velocity
and adaptation coefficient levels for the EVF group at the
start of initial training amplify the single-trial learning com-
parison. In addition, the recall metric is a more direct

measure of the extent subjects apply the learning reached at
the end of initial training. Finally, recall likely probes the
influence of explicit learning processes during early savings;
the brief single trial exposure makes it unlikely that the
motor response is due to an error-driven, implicit learning
mechanism. Thus, the motor output following a single trial
of reexposure may prompt the rapid execution of previously
successful movements (31, 42). Future studies could probe
this possibility to determine the extent the single-trial recall
can be induced and modulated with nonspecific physical
disturbances or feedback information. For example, recall
could be assessed for a force disturbance or visual cue dif-
ferent from that experienced during initial training [e.g., a
force pulse perturbation (12, 94), or explicit visual feed-
back in the opposite direction than that experienced dur-
ing initial training].

Summary

We have shown that motor learning of force-velocity rela-
tionships based on explicit visual feedback alone demon-
strates similar recall to motor adaptation based solely on
force-field perturbations. However, learning based on this
feedback was less stable and decayed at a significantly faster
rate. The results are consistent with the idea that explicit,
intentional learning can be rapidly recalled, but that this
learning decays quickly in the absence of consistent feed-
back. Future studies may intermix explicit visual feedback
with force-field perturbations to probe the influence on
learning when provided with the combined information.
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